
Dr. Rajni Bala
Associate Professor
Dept. of Computer Science
DDUC

Deen Dayal Upadhyaya College
Department of Computer Science

Workshop on Java J2SE

Object & Class

 Any real world entity is known as object

 Each object is represented by

1. attributes(characterstics)

2. Methods(behaviour)

 Collection of objects of similar type is known as class

Class

 Each class defines a new data type and once defined
is used for creating objects of that datatype.

 Class is template for an object and object is an
instance of class.

General form of class

Class Example

Declaring Objects

 Box mybox = new Box();

 Box mybox;// Declares a reference

 mybox = new Box();// allocates a memory

Assigning Object reference variables

 Box b1= new Box();

 Box b2 = b1;

Adding Methods

Constructors

Passing parameters to functions

 Call-by-value: All primitive

 Call-by-reference : All Objects are passed by
reference. Since array are implemented as objects,
therefore arrays are also passed by reference.

this keyword

 This is a reference to the current object

 It can used inside any method to refer to current
object.

Garbage Collection

 All the object are allocated memory dynamically using a
new operator

 In c++ memory for dynamically allocated objects is
released manually by using delete operator.

 Java takes a different approach for de-allocating
memory. It handles de-allocation for you automatically.

 when no references to an object exist, that object is
assumed to be no longer needed, and the memory
occupied by the object can be reclaimed.

 There is no explicit need to destroy objects as in C++.
Garbage collection only occurs sporadically (if at all)
during the execution of your program.

Finalize Method

 Sometimes an object will need to perform some action when it
is destroyed. To handle such situations, Java provides a
mechanism called finalization.

 To add a finalizer to a class, you simply define the finalize()
method. The Java runtime calls that method whenever it is
about to recycle an object of that class.

 Inside the finalize() method you will specify those actions
that must be performed before an object is destroyed.

 The garbage collector runs periodically, checking for objects
that are no longer referenced by any running state or
indirectly through other referenced objects. Right before an
asset is freed, the Java run time calls the finalize() method
on the object.

Finalize method

 The finalize() method has this general form:

protected void finalize()

{

 // finalization code here

}

Exercise

 Create a class stack

 Write a main class that reads a postfix expression
and evaluates it.

OOPS Concept

 Encapsulation

 Inheritance

 Polymorphism

 Abstraction

Encapsulation

 Binding data and methods as a single unit.

 Achieved through classes.

Inheritance

 Ability of an object to inherit the properties of other
class is known as inheritance.

 When a class inherits another class it inherits all the
data members and methods of that class.

 Inheritance is best understood by parent – child
relationship (Super – sub class).

 It defines IS_A relationship between super(parent)
and sub(child).

 Extends and implements are two keywords used for
implementing inheritance.

Inheritance

Inheritance

 Vehicle is a super-class of Car

 Car is a sub-class of Vehicle

 Car IS_A Vehicle

Purpose of Inheritance

 Code re-use

 To use polymorhism(run-time)

Example

Types of inheritance

 Single Inheritance

 Multiple Inheritance

 Multilevel Inheritance

Multiple inheritance

 Multiple inheritance not supported by Java.

 To remove ambiguity

 To provide more maintainable and clear design

Super Keyword

 It is used to refer to the immediate parent class

Super Keyword

 Calling function from the parent class with the same
name as in subclass.

Aggregation (HAS_A)

 Class A HAS_A relationship with class B if code in
class A has a reference to an instance of class B.

 Student HAS_A address

Example of Aggregation

Polymorphism

 One interface, many methods

 Method overloading

 Method overriding

Method Overloading

 If two or more method in a class have same name but
different parameters, it is known as overloading.

 Methods can be overloaded by changing the number
of parameters or types of parameters.

Method overriding

 When a method in a sub-class has the same name
and type signature as a method in super-class , the
method is known as overridden method.

 It is also referred as runtime polymorphism.

 Static methods cannot be overridden.

Overriding example

Dynamic Method Dispatch

 Method overriding forms the basis for one of Java’s most powerful
concepts: dynamic method dispatch.

 Dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at run time, rather than compile
time.

 Dynamic method dispatch is important because this is how Java
implements run-time polymorphism.

 a superclass reference variable can refer to a subclass object. Java
uses this fact to resolve calls to overridden methods at run time.

 When an overridden method is called through a superclass
reference, Java determines which version of that method to execute
based upon the type of the object being referred to at the time the
call occurs. Thus, this determination is made at run time.

Dynamic method dispatch

Abstract class

 If a class contain any abstract method then the class
is declared as abstract class.

 Abstract class is never instantiated.

 Abstract classes can have constructors, member
variables and normal methods.

 When you extend Abstract class ,you must define the
abstract method in the child class or make the chid
class abstract.

 Syntax
 abstract class class_name { }

Abstract Method

 Method that are declared without any body within a
class is known as abstract method.

 The body will defined by its subclass.

 Abstract method can never be static and final.

 Syntax

 abstract return_type function_name() ;

// no_definition

Example: Abstract Class

Using final keyword

 Using final with any method prevents method to be
overridden by its subclasses.

 Using final with class prevents the class to be
inherited by some other class.

Interface

 It is pure abstract class.

 Syntactically similar to classes.

 Cannot create an instance of interface.

 In interface all methods are abstract.

 Interface defines what a class can do without saying
anything about how a class will do it.

 Syntax

 interface interface_name { }

Example

Rules for using interface

 Methods inside interface must not be static, final

 All variables declared inside interface are implicitly
public static final variables.

 All methods inside Java interfaces are public and
abstract.

 Interface can extend one or more interfaces.

 Interface cannot implement a class

Example

Applying Interfaces

Object Class

 There is one special class, Object, defined by Java.

 All other classes are subclasses of Object. That is,
Object is a superclass of all other classes.

 This means that a reference variable of type Object
can refer to an object of any other class.

 Also, since arrays are implemented as classes, a
variable of type Object can also refer to any array.

Methods in Object Class

Using Command-line arguments

 A command-line argument is the information that directly
follows the program’s name on the command line when it is
executed. To access the command-line arguments inside a
Java program is quite easy—they are stored as strings in the
String array passed to main().

