Deen Dayal Upadhyaya College
Department of Computer Science
Workshop on Java J2SE




Any real world entity is known as object
Each object is represented by
attributes(characterstics)

Methods(behaviour)
Collection of objects of similar type is known as class



Each class defines a new data type and once defined
is used for creating objects of that datatype.

Class is template for an object and object is an
instance of class.



General form of class

O

class classname |
type instance-variablel;
type instance-variablel;
I
type instance-variableN;

type methodnamel(parameter-list) |
/ / body of method
]

type methodname2(parameter-list) |
// body of method

]
/e
type methodnameN(parameter-list) |
// body of method
}
I




Class Example

O

/* A program that uses the Box class.
Call this file BoxDemo.java
*/
class Box
1
double width;
double height;
double depth;
¥
// This class declares an cbject of type Box.
class BoxDemo

1
public static void main(String args[])

¢ Box mybox = new Box(); \ﬂﬂl]JJ'IE? iJE :343‘5‘5.."

double wol;

!/ assign wvalues to mybox's instance variables
mybox.width = 1@;

mybox.height = 28;

mybox.depth = 15;

!/ compute wolume of box

vol = mybox.width * mybox.height * mybox.depth;
System.out.println("Volume is " + wvol);



Box mybox = new Box();

Box mybox;// Declares a reference
mybox = new Box();// allocates a memory

Statement Effect
Box m.';-'bux; niall
mybox
mybox = new Box(); —t+— | Width
mybox Height
Depth
Box object




Assigning Object reference variables

O

When wou assign one object reference variable to another object reference variable, you
are not creating a copy of the object, you are only making a copy of the reference.



Adding Methods

class Box

double width;

double height;

double depth;

// display wolume of a box

vold wvolume()

1
System.out.print("volume is ");
System.out.println(width * height * depth);

¥
} Molume is 38@0.8

Volume is 162.8

class BoxDemo

public static void main{String args[])
1
Box myboxl = new Box();
Box mybox2 = new Box();
J/ assign values to mybox1's instance variables
myboxl.width = 18;
myboxl.height = 28;
myboxl.depth = 15;
/* assign different values to mybox2's
instance variables */
mybox2.width = 3;
mybox2.height = 6;
mybox2.depth = 9;
/il display wvolume of first box
mybox1.volume();
/! display wvolume of second box
mybox2.volume();




Constructors

class Box 1a
double width: class BoxDemo

ﬁ::}: E:;ﬁ::; public static void main{String args[])

{

/f This is the constructor for Box. 1
Box() Box myboxl = new Box();

i Box mybox2 = new Box(5,6,7);
System.out.println("Constructing Box"); {// display volume of first box

s ﬁbg]'ﬂ';ﬂlumi}; of d box
height = 1ﬂ; ISP E]l" yolume Secon

depth = 1@; mybox2.volume();
}

/f This is the constructor for Box.
Box(double w, double h, double d)

Constructing Box

// display volume of a box Volume is 10068.8
void volume() -

[ Volume is 21&8.8
System.out.print({"Volume is ");
System.out.println(width * height * depth);




Call-by-value: All primitive
Call-by-reference : All Objects are passed by

reference. Since array are implemented as objects,
therefore arrays are also passed by reference.



this keyword

O

Box(double width, double height, double depth) {
this.width = width;
this.height = height;
this.depth = depth;




All the object are allocated memory dynamically using a
new operator

In c++ memory for dynamically allocated objects is
released manually by using delete operator.

Java takes a different approach for de-allocating
memory. It handles de-allocation for you automatically.

when no references to an object exist, that object is
assumed to be no longer needed, and the memory
occupied by the object can be reclaimed.

There is no explicit need to destroy objects as in C++.
Garbage collection only occurs sporadically (if at all)
during the execution of your program.



Sometimes an object will need to perform some action when it
is destroyed. To handle such situations, Java provides a
mechanism called finalization.

To add a finalizer to a class, you simply define the finalize( )
method. The Java runtime calls that method whenever it is
about to recycle an object of that class.

Inside the finalize( ) method you will specify those actions
that must be performed before an object is destroyed.

The garbage collector runs periodically, checking for objects
that are no longer referenced by any running state or
indirectly through other referenced objects. Right before an
asset 1s freed, the Java run time calls the finalize( ) method
on the object.



The finalize( ) method has this general form:
protected void finalize( )

1

// finalization code here

b



Exercise

O




OOPS Concept

O




Encapsulation

O




Ability of an object to inherit the properties of other
class is known as inheritance.

When a class inherits another class it inherits all the
data members and methods of that class.

Inheritance is best understood by parent — child
relationship (Super — sub class).

It defines IS_ A relationship between super(parent)
and sub(child).

Extends and implements are two keywords used for
implementing inheritance.



Inheritance

extends




Inheritance

O

class Vehicle.




Purpose of Inheritance

O




class Vehicle

{

String vehicleType;

h

public class Car extends Vehicle {

String modelType;

public void showDetail()

{
vehicleType = "Car"; /laccessing Vehicle class member
modelType = “sports”;
System.out.println(modelType+" "+vehicleType);

h

public static void main(String[] args)

{

Car car =neuw Car();
car.showDetail();




Types of inheritance

O

class A ! SFREE A

class B class C

class B

Heirarchical
inheritance

Simple

Inheritance class C

Multilevel
inheritance



Multiple inheritance

O

class A {
void show() {}

¥

W

class B { class C {
void show() {} ; void show(){ }
}

‘N%

classD{ o
void show() { } ambiguity
problem




Super Keyword

O

class Parent

{

String name;

L
public class Child extends Parent {

String name;

public void details()

{
super.name = "Parent”; ffrefers to parent class member
name = "Child";

System.out.println{super.name+" and "+name);

¥

public static void main{String[] args)

{

Child cobj = new Child{);
cobj.details();




Super Keyword

class Parent

L
String name;
public woid details()

1

name = "Parent”;
System.out.println{name);

b

public class Child extends Parent {
String name;
public woid details()
{

super.details({); f/fcalling Parent class details() method
name = "Child";
System.out.println{name);
H
public static void main{5tring[] args)
{
Child cobj = new Child{);
cobj.details();




Class A HAS A relationship with class B if code in
class A has a reference to an instance of class B.

Student HAS A address

class Student
- Student

String name; trs

Address ad;

} Address )Address

house no

locality



Example of Aggregation

class Author

{

String authoriame;

int age;

String place;

Author(String name,int age,String place)
{
this.authorMame=name;
this.age=age;
this.place=place;

H

public String getAuthorMame()

{

return authoriame;

H
public int getAge()

{

return age;

H
public String getPlace()

{

return place;

¥
¥

class Book
{
String name;
int price;
Author auth;
Book{String n,int p,Author at)
{
this.name=n;
this.price=p;
this.auth=at;

1
public void showDetail()

{
System.out.println{"Book is"+name};
System.out.println{"price "+price);
System.out.println{"Author is "+auth.getAuthorName());
}
}

class Test

{

public static void main{String args[])

{
Author ath=new Author("Me",22,"India");
Book b=new Book("Java",558,ath);
b.showDetail();

1

1




Polymorphism

O




If two or more method in a class have same name but
different parameters, it is known as overloading.

Methods can be overloaded by changing the number
of parameters or types of parameters.

class Calculate
{
void sum {int a, int b)
{
System.out.println{"sum is"+{a+h)) ;
¥
void sum (float a, float b)
{
System.out.println{"sum is"+{a+b));
¥
Public static void main (String[] args)
{
Calculate cal = new Calculate();
cal.sum (8,5); Jfsum{int a, int b) is method is called.
cal.sum (4.8, 3.8); [/sum{float a, float b) is called.

¥
}



When a method in a sub-class has the same name
and type signature as a method in super-class, the
method is known as overridden method.

It is also referred as runtime polymorphism.
Static methods cannot be overridden.



Overriding example

package overriding;
J//Method overriding.
class A
1

int 1, j;

A(int a, int b)

aj

b;
ffdisplay i and j
void show()

1

¥

System.out.println{"i and j: "

h

class B extends A {
int k;
B(int a, int b, int c)
{
super(a, b);
k =c;
T
f/fdisplay k - this overrides show() in A
vold show()

1
¥

System.out.println{™k: " + k);

public class Override

1
public static void main(String[] args)

1

B subOb = new B(1, 2, 3);
subOb.show(); // this calls show() in B




Method overriding forms the basis for one of Java’s most powerful
concepts: dynamic method dispatch.

Dynamic method dispatch is the mechanism by which a call to an
overridden method is resolved at run time, rather than compile
time.

Dynamic method dispatch is important because this is how Java
implements run-time polymorphism.

a superclass reference variable can refer to a subclass object. Java
uses this fact to resolve calls to overridden methods at run time.

When an overridden method is called through a superclass
reference, Java determines which version of that method to execute
based upon the type of the object being referred to at the time the
call occurs. Thus, this determination is made at run time.



Dynamic method dispatch

package dynamicdispatch;
ffUsing run-time polymerphism.
class Figure
1
double diml;
double dim2;
Figure(double a, double b)
:
diml = a;
dim2 = b;
double area()
1
System.out.println("Area for Figure is undefined.™);
return @;
¥
¥
class Rectangle extends Figure
1
: Rectangle(double a, double b)
1

}

/foverride area for rectangle
double area()

1

super(a, b);

System.out.println("Inside Area for Rectangle.™);
return diml * dim2;

class Triangle extends Figure

{
Triangle(double a, double b)
1
super(a, b);
¥

{foverride area for right triangle
double area()

1

System.out.println({"Inside Area for Triangle.");
return diml * dim2 / 2;

¥

class FindArea {
public static wvoid main(String args[])

1
Figure T = new Figure(l@, 18);
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(l®, 8);
Figure figref;
figref = r;
System.out.println{"Area is " + figref.area());
figref = t;
System.out.println{"Area is " + figref.area());
figref = f;
System.out.println{"Area is " + figref.area());
¥




If a class contain any abstract method then the class
is declared as abstract class.

Abstract class is never instantiated.

Abstract classes can have constructors, member
variables and normal methods.

When you extend Abstract class ,you must define the
abstract method in the child class or make the chid
class abstract.

Syntax

abstract class class name {}



Method that are declared without any body within a
class is known as abstract method.

The body will defined by its subclass.
Abstract method can never be static and final.
Syntax

abstract return_type function_name() ;
// no__definition



Example: Abstract Class

JUsing abstract methods and classes.
ffUsing run-time polymorphism.
abstract class Figure
1

double diml;
double dim2;
Figure(double a, double b)
1
diml = a;
dim2 = b;
¥

abstract double area();

¥
class Rectangle extends Figure

{

Rectangle(double a, double b)
1

}

{foverride area for rectangle
double area()

d

superi{a, b);

System.out.println("Inside Area for Rectangle.™);
return diml * dim2;

class Triangle extends Figure

1
Triangle(double a, double b}

1
¥

J/foverride area for right triangle
double area()

1

super{a, b);

System.out.println("Inside Area for Triangle.");

return diml * dim2 / 2;
¥
¥
class FindArea {
public static woid main(String args[])
1
Rectangle r = new Rectangle(9, 5);
Triangle t = new Triangle(l®, 8);
Figure figref;
figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());




Using final with any method prevents method to be
overridden by its subclasses.

Using final with class prevents the class to be
inherited by some other class.

olass & | final olass A {

The following olass is illegal.
olass B extends & { // ERRCA! Can't subolass A



It is pure abstract class.

Syntactically similar to classes.

Cannot create an instance of interface.
In interface all methods are abstract.

Interface defines what a class can do without saying
anything about how a class will do it.

Syntax
interface interface_name{ }



interface Moveable

I
L

int AVERAGE-SPEED=48;

void move();
1

interface Moveable

public static final int AVERAGE-SPEED=40;
public abstract void move();




Methods inside interface must not be static, final

All variables declared inside interface are implicitly
public static final variables.

All methods inside Java intertaces are public and
abstract.

Interface can extend one or more interfaces.
Interface cannot implement a class



interface Moveable
{

int AVG-SPEED = 48;
void move();

¥

class Vehicle implements Moveable

{

public void move()

{

System .out. print in ("Average speed is"+AVG-SPEED");
L

public static void main (String[] arg)

{

Vehicle vc = new Vehicle();

ve.move( ),

¥

¥
Output:

Average speed is 48.




Applying Interfaces

/{ Define an integer stack interface. /f Aan implementation of IntStack that uses fixed storage.

interface Intstack { clas? F;xe?szac:cimplenents Intstack {
private int s [1:
private int tos;

void push{int item); // store an item
int pop(); // retrieve an item

/f allocate and initialize stack
Fixedstack(int size) {

stck = new int[size]:;

tos = -1;
}

/f Push an item omto the stack
public woid push({int item) {
if{tos==stck.length-1) // use length member
System.out.println("stack is full.");
alse
stock[++tos] = item;

/f Pop an item from the stack
public int popi() {
if{tos < 0) {
System.out.println("stack underflow.");
return 0;
}
alse
return stck[tos—-];




There is one special class, Object, defined by Java.

All other classes are subclasses of Object. That is,
Object is a superclass of all other classes.

This means that a reference variable of type Object
can refer to an object of any other class.

Also, since arrays are implemented as classes, a
variable of type Object can also refer to any array.



Methods in Object Class

O

Method Purpose

Object clone( ) Creates a new object that is the same as

boolean equals(Object object) Determines whether one object is equal to
another.

void finalize( ) Called before an unused object is
recycled.

Class getClass( ) Obtains the class of an object at run time.

int hashCode( ) Returns the hash code associated with the
invoking object.

void notify( ) Resumes execution of a thread waiting on
the invoking object.

void notify All( ) Resumes execution of all threads waiting
on the invoking object.

String toString( ) Returns a string that describes the object.

void wait( ) Waits on another thread of execution.

void wait{long milliseconds)

void wait{long milliseconds,

int nanoeseconds)



A command-line argument is the information that directly
follows the program’s name on the command line when it is
executed. To access the command-line arguments inside a
Java program is quite easy—they are stored as strings in the
String array passed to main( ).

// Display all command-line arguments.
class CommandLine {
public static void main(String args[]) {
for(int i=0; i<args.length; i++)
system.out.println{"args["™ + 1 + "]: " +
args[il);



