
C L I E N T / S E R V E R A R C H I T E C T U R E

Java Network Programming

Agenda

 Networking Basics
 TCP, UDP, Ports, DNS, Client-Server Model

 Sockets

 Datagrams

 URL

Elements of Client-Server Computing

 a client, a server, and network

Client machine
Server machine

Server
Client

Network

Networking basics

 Computers running on the Internet communicate
with each other using either the Transmission
Control Protocol (TCP) or the User Datagram
Protocol (UDP).

Networking Basics

 Internet protocol (IP) addresses

 Every host on Internet has a unique IP address

143.89.40.46, 203.184.197.198

203.184.197.196, 203.184.197.197, 127.0.0.1

 More convenient to refer is to use hostname string

google.com, gmail.com, localhost

 One hostname can correspond to multiple internet
addresses:
 www.yahoo.com:

66.218.70.49; 66.218.70.50; 66.218.71.80; 66.218.71.84; …

DNS-Domain Name System

 The Domain Name system (DNS) maps these
names to numbers.

 Most importantly, it serves as the "phone book" for
the Internet by translating human-readable
computer hostnames, e.g. www.example.com, into
the IP addresses, e.g. 208.77.188.166, that
networking equipment needs to deliver
information.

Understanding Ports

 Ports

 Many different services can be running on the host

 A port identifies a service within a host

• IP address + port number = "phone number“ for service

Understanding Ports

 Port is represented by a positive (16-bit) integer
value

 Some ports have been reserved to support
common/well known services:
 ftp 21

 telnet 23

 smtp 25

 http 80

 User level process/services generally use port
number value >= 1024, since 0-1023 ports are
reserved and known as Well Known Ports.

Understanding Ports

 The TCP and UDP

 protocols use ports to map

incoming data to a particular

process running on a computer.

server

 P
o
r
t

Client
TCP

TCP or UDP

port port port port

service Service service service

port# data Data

Packet

Use of Ports

 Data transmitted over the Internet is accompanied
by addressing information that identifies the
computer and the port for which it is destined.
 The computer is identified by its 32-bit IP address, which

is used by Internet Protocol(IP) to deliver data to the
right computer on the network.

 Ports are identified by a 16-bit number, which TCP and
UDP use to deliver the data to the right application.

Types of Communication

 There are 2 types of communication:
 Connection-oriented communication

 Connection-less communication

Transmission Control Protocol

 A connection-based protocol that provides a reliable
flow of data between two computers.

 Provides a point-to-point channel for applications that
require reliable communications.

 The Hypertext Transfer Protocol (HTTP), File Transfer
Protocol (FTP), and Telnet are all examples of applications
that require a reliable communication channel

 Guarantees that data sent from one end of the
connection actually gets to the other end and in the
same order it was sent. Otherwise, an error is reported.

User Datagram Protocol

 A protocol that sends independent packets of data,
called datagrams, from one computer to another
with no guarantees about arrival.

 UDP is not connection-based like TCP and is not
reliable:
 Sender does not wait for acknowledgements

 Arrival order is not guaranteed

 Arrival is not guaranteed

 Used when speed is essential, even in cost of
reliability
 e.g. games etc.

Sockets

 A socket is an endpoint of a two-way communication link
between two programs running on the network.

 Network communication using Sockets is very much similar
to performing file I/O

 In fact, socket handle is treated like file handle.

 The streams used in file I/O operation are also applicable to
socket-based I/O

Socket Communication

 A server (program) runs on a specific computer and
has a socket that is bound to a specific port.

 The server waits and listens to the socket for a client
to make a connection request.

server

Client

Connection request p
o

rt

Socket Communication

 If everything goes well, the server accepts the connection.

 Upon acceptance, the server gets a new socket bounds to a
different port.
 It needs a new socket so that it can continue to listen to the original

socket for connection requests while serving the connected client.

server

Client

Connection

p
o

rt

p
o

rt

Networking Classes

 Through the classes in java.net, Java programs can
use TCP or UDP to communicate over the Internet.

 The URL, URLConnection, Socket, and
ServerSocket classes all use TCP to

communicate over the network.

 The DatagramPacket, DatagramSocket,
and MulticastSocket classes are used by UDP.

TCP/IP in Java

 Accessing TCP/IP from Java is straightforward.
The main functionality is in the following classes:

java.net.InetAddress : Represents an IP

address (either IPv4 or IPv6) and has methods
for performing DNS lookup.

java.net.Socket : Represents a TCP socket.

java.net.ServerSocket : Represents a

server socket which is capable of waiting for
requests from clients.

InetAddress

 The InetAddress class is used to encapsulate both the
numerical IP address and the domain name for that
address.

 We interact with this class by using the name of an IP
host, which is more convenient and understandable than
its IP address.

 The InetAddress class hides the number inside.

 Serves three main purposes:
 Encapsulates an address

 Performs name lookup (converting a host name into an IP address)

 Performs reverse lookup (converting the address into a host name)

Factory Methods in InetAddress class

• static InetAddress getLocalHost()

 throws UnknownHostException
Returns the InetAddress object that represents the local host.

• static InetAddress getByName(String hostName)

 throws UnknownHostException
Returns the InetAddress for a host name passed to it.

• static InetAddress[] getAllByName(String hostName)

 throws UnknownHostException
Returns an array of InetAddress that represent all the names that a
passes hostName resolves to.

 UnknownHostException is thrown if DNS system can not find
the IP address for specific host.

Example:

class InetAddressTest

{

 public static void main(String args[])

 throws UnknownHostException

 {

 InetAddress Address = InetAddress.getLocalHost();

 System.out.println(Address);

 Address =
 InetAddress.getByName("www.yahoo.com");

 System.out.println(Address);

 InetAddress SW[] =
 InetAddress.getAllByName("www.google.com");

 for (int i=0; i<SW.length; i++)

 System.out.println(SW[i]);

 }

}

Example

C L I E N T / S E R V E R A R C H I T E C T U R E

Socket Programming

Socket Classes

 A socket is bound to a port number so that the TCP
layer can identify the application that data destined
to be sent.

 Java.net package provides two classes:
 Socket – for implementing a client

 ServerSocket – for implementing a server

Two types of TCP Sockets

 java.net.Socket is used by clients who wish to

establish a connection to a (remote) server

 A client is a piece of software (usually on a different
machine) which makes use of some service

 java.net.ServerSocket is used by servers so

that they can accept incoming TCP/IP connections

 A server is a piece of software which advertises and then
provides some service on request

Client-Server Interaction via TCP

Java Sockets

ServerSocket(1234)

Socket(“128.250.25.158”, 1234)

Output/write stream

Input/read stream

It can be host_name like “books.google.com”

Client

Server

ServerSocket

 The ServerSocket class is used to create socket for
server that listen for either local or remote client
programs to connect to them on published port.

 A server socket waits for requests to come over the
network. It performs some operation based on that
request, and then possibly returns a result to the
client.

 When a client connects to a server socket, a TCP
connection is made, and a (normal) socket is created
for each end point.

Constructors

• ServerSocket (int port)

 throws BindException, IOException
Creates server socket on the specified port with a queue
length of 50

• ServerSocket (int port, int maxQueue)

 throws BindException, IOException
Creates server socket on the specified port with a maximum
queue length of maxQueue

• ServerSocket (int port, int maxQ, InetAddress
localAddress) throws IOException
Creates a server socket on the specified port with a maximum queue
length of maxQueue. On a multihomed host, localAddress specifies the IP
address to which this socket binds.

Some useful methods

 Socket accept()

 Block waiting for a client to attempt to establish a
connection.

 void close()

 Called by the server when it is shutting down to ensure
that any resources are deallocated

Accepting Connections

• Usually, the accept() method is executed within

an infinite loop
– i.e., while(true){...}

• The accept method returns a new socket (with a
new port) for the new channel. It blocks until
connection is made.

• Syntax:
– Socket accept() throws IOException

Implementing a Server

• Open the Server Socket:
 ServerSocket server;
 DataOutputStream os;
 DataInputStream is;
 server = new ServerSocket(PORT);
• Wait for the Client Request:
 Socket client = server.accept();
• Create I/O streams for communicating to the client
 is = new DataInputStream(client.getInputStream());
 os = new DataOutputStream(client.getOutputStream());
• Perform communication with client
 Receive from client: String line = is.readLine();
 Send to client: os.writeBytes("Hello\n");
• Close sockets:
 client.close();

Client Sockets

• Java wraps OS sockets (over TCP) by the objects of
class java.net.Socket

 Socket(String remoteHost, int remotePort)

• Creates a TCP socket and connects it to the remote
host on the remote port (hand shake)

• Write and read using streams:
 InputStream getInputStream()

 Returns the InputStream associated with invoking socket

 OutputStream getOutputStream()

 Returns the OutputStream associated with invoking socket

Constructors

• Socket(String remoteHost, int remotePort)
• Creates a socket connecting the local host to the named host and

port; can throw an UnknownHostException if the named
host is not found.

• Socket(InetAddress ip, int remotePort)
• Creates a socket using a preexisting InetAddress object and a

port;

Instance Methods

 InetAddress getInetAddress()
 Returns the InetAddress associated with the Socket object.

 It returns null if socket is not connected.

 int getPort()
 Returns the remote port to which invoking Socket object is

connected.

 int getLocalPort()
 Returns the local port to which invoking Socket object is

connected.

 void close()
 This method is used to close the connection created between

Client and Server.

Implementing a Client

1. Create a Socket Object:
 client = new Socket(server, port_id);

2. Create I/O streams for communicating with the server:
 istream = new BufferedReader(new

 InputStreamReader(client.getInputStream()));
 ostream = new PrintWriter(client.getOutputStream());

3. Perform I/O or communication with the server:
 Receive data from the server:

 String line = istream.readLine();

 Send data to the server:

 ostream.println("Hello\n");

4. Close the socket when done:
 client.close();

Chatting Program(Server side)

Chatting Program(Client side)

S O C K E T P R O G R A M M I N G W I T H U D P

Datagram

Datagrams

• A datagram is an independent, self-contained
message sent over the network whose arrival, arrival
time, and content are not guaranteed.

• The java.net package contains classes to use
datagrams to send and receive packets over the
network: DatagramSocket and DatagramPacket

Socket programming with UDP

 UDP

 Connectionless and unreliable service.

 There isn’t an initial handshaking phase.

 Doesn’t have a pipe.

 Transmitted data may be received out of order, or lost

 Socket Programming with UDP

 No need for a socket.

 No streams are attached to the sockets.

 The sending hosts creates “packets” by attaching the IP destination address
and port number to each batch of bytes.

Client/Server Socket Interaction:UDP

close
clientSocket

Server (running on hostid)

read reply from
clientSocket

create socket,

 clientSocket =
DatagramSocket()

Client

Create, address (hostid, port=x,
send datagram request
using clientSocket

create socket,
port=x, for
incoming request:
serverSocket =
DatagramSocket()

read request on
serverSocket

write reply to
serverSocket
specifying client
host address,
port umber

DatagramSocket

 public DatagramSocket() throws SocketException
 Allocate any avaliable port number for creating a socket on

local host(used for receiving datagram)

 public DatagramSocket(int port) throws
SocketException
 Use the specified port number for creating a socket on local

host(used for receiving datagram)

DatagramPacket

 public DatagramPacket(byte[] buffer, int length)

 This constructor specifies a buffer that will receive data, and
the size of a packet.

 Example:

 byte[] buffer = new byte[8192];

 DatagramPacket dp = new

 DatagramPacket(buffer, buffer.length);

 public DatagramPacket(byte[] buffer, int offset, int
length)
 The second form allows to specify an offset into the buffer at

which data will be stored.

 DatagramPacket

 public DatagramPacket(byte[] data, int length,
InetAddress destination, int port)

 This form specifies a target address and port, which are
used by a DatagramSocket to determine where the data
in the packet will be sent.

 public DatagramPacket(byte[] data, int offset, int
length, InetAddress destination, int port)

 This form allows to transmits packets beginning at the
specified offset into the data.

Sending and Receiving Packets

 public void send(DatagramPacket dp) throws
IOException

 Sends the full datagram out onto the network

 public void receive(DatagramPacket dp) throws
IOException

 Waits until a datagram fills in emptyPacket with the
message

Several methods defined by DatagramPacket

 InetAddress getAddress()
 Returns the InetAddress of the source.

 int getPort()
 Returns the port number.

 byte[] getData()
 Returns the byte array of data contained in the datagram. Mostly

used to retrieve data from the datagram after it has been received.

 int getLength()
 Returns the length of the data contained in the byte array that would

be returned from the getData() method.

 int getOffset()
 Returns the starting index of the data.

Several methods defined by DatagramPacket

 void setAddress(InetAddress ipAddress)
 Sets the address to which a packet will be sent. The address is

specified by ipAddress.

 void setData(byte[] data)
 Sets the data part of a packet to data, the offset to zero, length to

number of bytes in data.

 void setData(byte[] data, int index, int size)
 Sets the data to data, the offset to index, and the length to size.

 void setLength(int size)
 Sets the length of the packet to size.

 void setPort(int port)
 Sets the port to specified port number.

Example: DatagramSender

 This example sends datagrams to a specific host
(anywhere on the Internet)

 The steps are as follows:
 Create a new DatagramPacket

 Put some data which constitutes your message in the new
DatagramPacket

 Set a destination address and port so that the network knows
where to deliver the datagram

 Create a socket with a dynamically allocated port number

 Send the packet through the socket onto the network

Example: DatagramSender

byte[] data = “This is the message”.getBytes();

DatagramPacket packet =

 new DatagramPacket(data, data.length);

// Create an address

InetAddress destAddress =

 InetAddress.getByName(“fred.domain.com”);

packet.setAddress(destAddress);

packet.setPort(9876);

DatagramSocket socket = new DatagramSocket();

socket.send(packet);

Example:DatagramReceiever

 The steps for sending the data:
 Create an empty DatagramPacket (and allocate a buffer for the

incoming data)

 Create a DatagramSocket on an agreed socket number to
provide access to arrivals

 Use the socket to receive the datagram (the thread will block
until a new datagram arrrives)

 Extract the data bytes which make up the message

Example:DatagramReceiever

// Create an empty packet with some buffer space

byte[] data = new byte[1500];

DatagramPacket packet =

 new DatagramPacket(data, data.length);

DatagramSocket socket = new DatagramSocket(9876);

// This call will block until a datagram arrives

socket.receive(packet);

// Convert the bytes back into a String and print

String message =

 new String(packet.getData());

System.out.println("message is " + message);

System.out.println("from " + packet.getAddress());

UDP Server.java

import java.io.*;
import java.net.*;

class UDPServer {
 public static void main(String args[]) throws Exception
 {

 DatagramSocket serverSocket = new DatagramSocket(9876);

 byte[] receiveData = new byte[1024];
 byte[] sendData = new byte[1024];

 while(true)
 {

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

 String sentence = new String(receivePacket.getData());

UDP Server.java

InetAddress IPAddress = receivePacket.getAddress();

 int port = receivePacket.getPort();

 String capitalizedSentence = sentence.toUpperCase();
 sendData = capitalizedSentence.getBytes();

 DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, port);

 serverSocket.send(sendPacket);

 }
 }
}

UDP Client.java

import java.io.*;
import java.net.*;

class UDPClient {
 public static void main(String args[]) throws Exception
 {

 BufferedReader br =
 new BufferedReader(new InputStreamReader(System.in));

 DatagramSocket clientSocket = new DatagramSocket();

 InetAddress IPAddress = InetAddress.getByName("hostname");

 byte[] sendData = new byte[1024];
 byte[] receiveData = new byte[1024];

 String sentence = br.readLine();

 sendData = sentence.getBytes();

UDP Client.java

DatagramPacket sendPacket =
 new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

 clientSocket.send(sendPacket);

 DatagramPacket receivePacket =
 new DatagramPacket(receiveData, receiveData.length);

 clientSocket.receive(receivePacket);

 String modifiedSentence =
 new String(receivePacket.getData());

 System.out.println("FROM SERVER:" + modifiedSentence);

 clientSocket.close();

 }
}

U N I F O R M R E S O U R C E L O C A T O R

URL

URL - Uniform Resource Locator

http://

Protocol

www.javapassion.com:

Host
Name

80

Port
Number

/javaintro/index.html

Path &
File

Name

 URL is a reference (an address) to a resource on the
Internet.
 A resource can be a file, a database query and more.

 URL provides form to uniquely identify or address information
on the internet.

Class URL

 Class URL represents a Uniform Resource Locator,
a pointer to a "resource" on the World Wide Web.

Constructors

 URL(String urlSpecifier)
 Allows to create a URL for the specified context

 URL(URL urlObj, String urlSpecifier)
 Allows to use an existing URL as a reference context and then

create a new URL from the specified context.

 URL(String protName, String hostName, int port,
String path)

 URL(String protName, String hostName, String path)
 Above two constructors allow to break up the URL into its

component parts.

 Each can throw an exception of MalformedURLException

Example

class URLDemo

{

 public static void main(String args[])

 throws MalformedURLException

 {

 URL hp = new URL("http://content-

ind.cricinfo.com/ci/content/current/story/news.html");

 System.out.println("Protocol: " + hp.getProtocol());

 System.out.println("Port: " + hp.getPort());

 System.out.println("Host: " + hp.getHost());

 System.out.println("File: " + hp.getFile());

 System.out.println("Ext:" + hp.toExternalForm());

 }

}

Output

Protocol: http

Port: -1

Host: content-ind.cricinfo.com

File: /ci/content/current/story/news.html

Ext:http://content-
ind.cricinfo.com/ci/content/current/story/news.html

S E R V I N G M U L T I P L E C L I E N T S

MultiThreading

Example: Serving Multiple Clients

Server

Client n . . . Client 1

A serve socket

on a port

 A socket for a

client

A socket for a

client

Note: Start the server first, then start
multiple clients.

Serving Multiple Clients

Multiple clients are quite often connected to a single server at the same time.
Typically, a server runs constantly on a server computer, and clients from all
over the Internet may want to connect to it. You can use threads to handle the
server's multiple clients simultaneously. Simply create a thread for each
connection. Here is how the server handles the establishment of a connection:

while (true) {

 Socket socket = serverSocket.accept();

 Thread thread = new ThreadClass(socket);

 thread.start();

}

The server socket can have many connections. Each iteration of the while loop
creates a new connection. Whenever a connection is established, a new thread
is created to handle communication between the server and the new client;
and this allows multiple connections to run at the same time.

